

2-Mbit (256K x 8) MoBL® Static RAM

Features

· Very high speed: 45 ns

— Wide voltage range: 2.20V – 3.60V

Pin-compatible with CY62138CV30

Ultra-low standby power
 Typical standby current: 1 μA

- Maximum standby current: 7 μA

Ultra-low active power

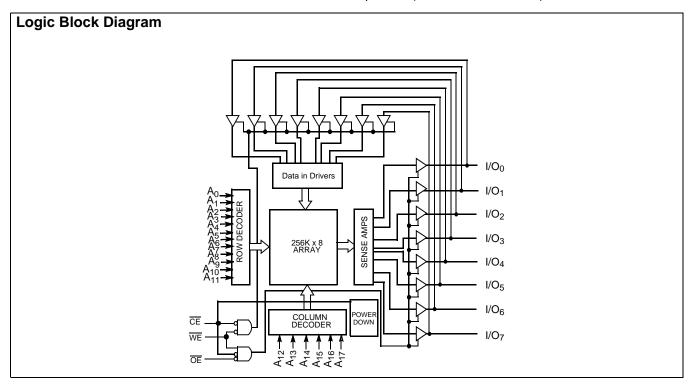
- Typical active current: 2 mA @ f = 1 MHz

• Easy memory expansion with CE and OE features

· Automatic power-down when deselected

CMOS for optimum speed/power

• Offered in Pb-free 36-ball BGA package


Functional Description[1]

The CY62138EV30 is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption when deselected (CE HIGH).

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{18}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW and WE LOW).

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2]

FBGA Top View

Product Portfolio

					Power Dissipation					
Product				Operating I _{CC} (mA)						
Froduct	Vo	_C Range ((V)	Speed	f = 1 MHz f = f _{max}		Standby I _{SB2} (μA)			
	Min.	Typ. ^[3]	Max.	(ns)	Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62138EV30LL	2.2	3.0	3.6	45	2	2.5	15	20	1	7

Notes:

NC pins are not connected on the die.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

3.6V

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage to Ground Potential -0.3V to V_{CC(MAX)} + 0.3V

DC Input Voltage ^[4,5]		0.3V to V _{CC(M}	_{IAX)} + 0.3V			
Output Current into Outputs (LOW)20 m/						
Static Discharge Voltage > 2001V (per MIL-STD-883, Method 3015)						
Latch-up Current			. > 200 mA			
Product	Range	Ambient Temperature	V cc ^[6]			
CY62138EV30LL	Industrial	–40°C to +85°C	2.2V to			

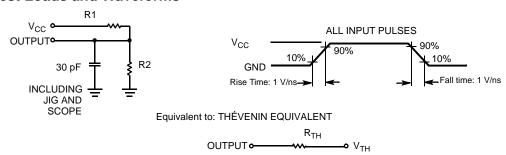
Electrical Characteristics Over the Operating Range

				CY	62138EV30-4	1 5	
Parameter	Description	Test	Conditions	Min.	Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	V _{CC} = 2.20V	2.0			V
		I _{OH} = -1.0 mA	V _{CC} = 2.70V	2.4			V
V _{OL}	Output LOW Voltage	$I_{OL} = 0.1 \text{ mA}$	V _{CC} = 2.20V			0.4	V
		I _{OL} = 2.1 mA	V _{CC} = 2.70V			0.4	V
V _{IH}	Input HIGH Voltage	$V_{CC} = 2.2V \text{ to}$	2.7V	1.8		$V_{CC} + 0.3V$	V
		V_{CC} = 2.7V to	3.6V	2.2		$V_{CC} + 0.3V$	V
V _{IL} Ir	Input LOW Voltage	$V_{CC} = 2.2V \text{ to } 2.7V$		-0.3		0.6	V
		V_{CC} = 2.7V to	3.6V	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$		–1		+1	μА
l _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V	V _{CC} , ed	– 1		+1	μА
I _{CC}	V _{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$ $I_{OUT} = 0 \text{ mA}$		15	20	mA
		f = 1 MHz	CMOS levels		2	2.5	mA
I _{SB1}	Automatic CE Power-down Current — CMOS Inputs	$\label{eq:center_constraints} \begin{split} \overline{CE} & \geq V_{CC} - 0.2V, \ V_{IN} \geq V_{CC} - 0.2V, \ V_{IN} \leq 0.2V), \ f = f_{\underline{MAX}} \ (Address \ and \ Data \ Only), \ f = 0 \ (\overline{OE}, \ and \ \overline{WE}), \ V_{CC} = 3.60V \end{split}$			1	7	μА
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V,$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or } V_{\text{IN}} \le 0.2V,$ $f = 0, V_{\text{CC}} = 3.60V$			1	7	μА

Capacitance for all packages^[7]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	10	pF

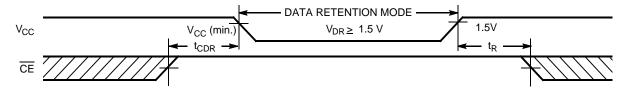
Notes:


- A. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 5. V_{IH(max)} = V_{CC}+0.75V for pulse durations less than 20 ns.
 6. Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min.) and 200 μs wait time after V_{CC} stabilization.

Thermal Resistance

Parameter	Description	Test Conditions	BGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	72	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case)		8.86	°C/W

AC Test Loads and Waveforms



Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V_{TH}	1.20	1.75	V

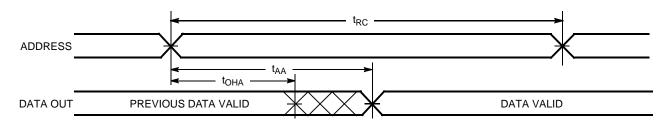
Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1V$, $\overline{CE} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$		0.8	3	μА
t _{CDR} ^[7]	Chip Deselect to Data Retention Time		0			ns
t _R ^[8]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

Notes

- 7. Tested initially and after any design or process changes that may affect these parameters.
- 8. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100~\mu s$ or stable at $V_{CC(min.)} \ge 100~\mu s$.



Switching Characteristics (Over the Operating Range)^[9]

		45			
Parameter	Description	Min.	Max.	Unit	
Read Cycle		1		1	
t _{RC}	Read Cycle Time	45		ns	
t _{AA}	Address to Data Valid		45	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		45	ns	
t _{DOE}	OE LOW to Data Valid		22	ns	
t _{LZOE}	OE LOW to Low Z ^[10]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[10,11]		18	ns	
t _{LZCE}	CE LOW to Low Z ^[10]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[10, 11]		18	ns	
t _{PU}	CE LOW to Power-up	0		ns	
t _{PD}	CE HIGH to Power-up		45	ns	
Write Cycle ^[12]		1		1	
t _{WC}	Write Cycle Time	45		ns	
t _{SCE}	CE LOW to Write End	35		ns	
t _{AW}	Address Set-up to Write End	35		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	35		ns	
t _{SD}	Data Set-up to Write End	25		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[10, 11]		18	ns	
t _{LZWE}	WE HIGH to Low Z ^[10]	10		ns	

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[13, 14]

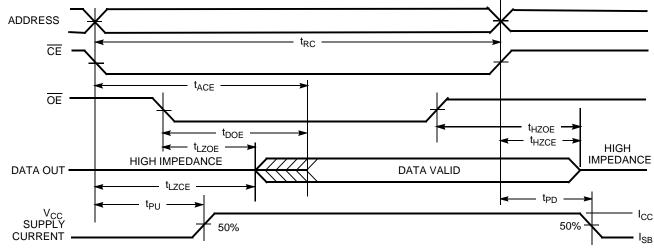
- Notes:

 9. Test Conditions for all parameters other than three-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified l_{OL}/l_{OH} as shown in the "AC Test Loads and Waveforms" section.

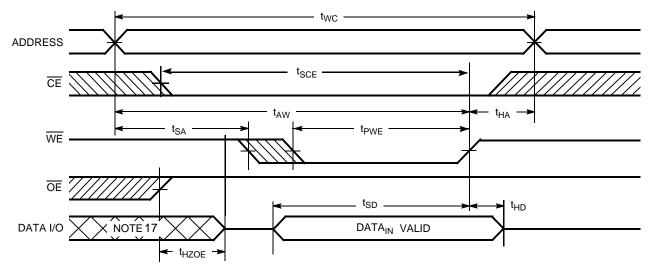
 10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.

 11. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high-impedance state.

 12. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.


 13. Device is continuously selected. OE, CE = V_{IL}.

 14. WE is HIGH for read cycle.



Switching Waveforms (continued)

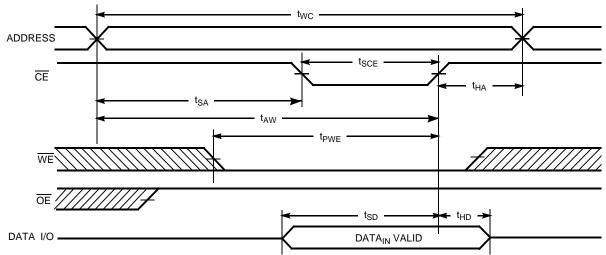
Read Cycle No. 2 (OE Controlled)[14, 15]

Write Cycle No. 1 (WE Controlled)[16, 18]

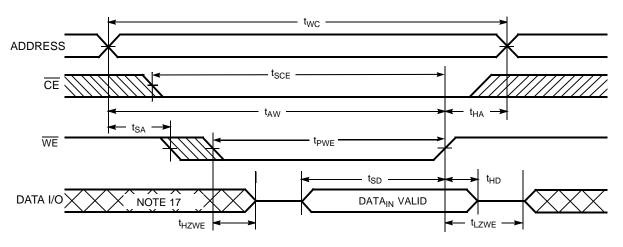
Notes:

- 15. Address valid prior to or coinc<u>ide</u>nt with \overline{CE} transition LOW.

 16. Data I/O is high impedance if $\overline{OE} = V_{IH}$.


 17. During this period, the I/Os are in output state and input signals should not be applied.

 18. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in high-impedance state.



Switching Waveforms (continued)

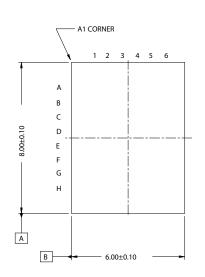
Write Cycle No. 2 (CE Controlled)[16, 18]

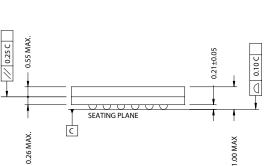
Write Cycle No. 3 (WE Controlled, OE LOW)[18]

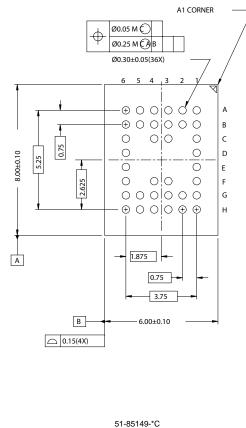
Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	Data in (I/O ₀ –I/O ₇)	Write	Active (I _{CC})

BOTTOM VIEW




Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62138EV30LL-45BVXI	51-85149	36-ball Very Fine Pitch BGA (6 mm × 8 mm × 1 mm) (Pb-free)	Industrial

Package Diagrams

TOP VIEW 36-ball VFBGA (6 x 8 x 1 mm) (51-85149)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	EV. ECN NO. Issue Orig. of Change			Description of Change
**	237432	See ECN	AJU	New data sheet
*A	427817	See ECN	NXR	Removed 35 ns Speed Bin Removed "L" version Removed 32-pin TSOPII package from product Offering. Changed ball C3 from DNU to NC. Removed the redundant footnote on DNU. Moved Product Portfolio from Page # 3 to Page #2. Changed I_{CC} (Max) value from 2 mA to 2.5 mA and I_{CC} (Typ) value from 1.5 mA to 2 mA at f = 1 MHz Changed I_{CC} (Typ) value from 12 mA to 15 mA at f = f_{max} =1/ t_{RC} Changed I_{SB1} and I_{SB2} Typ. values from 0.7 μ A to 1 μ A and Max. values from 2.5 μ A to 7 μ A. Changed V _{CC} stabilization time in footnote #7 from 100 μ s to 200 μ s Changed the AC test load capacitance from 50pF to 30pF on Page# 4 Changed V _{DR} from 1.5V to 1V on Page# 4. Changed I_{CCDR} from 1 μ A to 3 μ A in the Data Retention Characteristics tall on Page # 4. Corected I_{RC} in Data Retention Characteristics from 100 μ s to I_{RC} ns Changed I_{CDR} , I_{LZCE} , I_{LZWE} from 6 ns to 10 ns Changed I_{LZOE} , I_{LZCE} , I_{LZWE} from 15 ns to 18 ns Changed I_{LZOE} from 3 ns to 5 ns Changed I_{SC} and I_{AW} from 40 ns to 35 ns Changed I_{SC} and I_{AW} from 40 ns to 35 ns Changed I_{SD} from 20 ns to 25 ns Changed I_{SD} from 25 ns to 35 ns Updated the Ordering Information table and replaced Package Name column with Package Diagram.